1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | /** * Definition for a binary tree node. * public class TreeNode { * public int val; * public TreeNode left; * public TreeNode right; * public TreeNode(int x) { val = x; } * } */ public class Solution { public bool IsSameTree(TreeNode p, TreeNode q) { if(p == null && q == null) return true; bool same = false; if((p != null) && (q != null)) { bool leftTreeSame = IsSameTree(p.left, q.left); bool rightTreeSame = IsSameTree(p.right, q.right); same = leftTreeSame && rightTreeSame; same = same && (p.val == q.val ? true : false); } return same; } } |
- Invert Binary Tree
- In-Place Recursive Solution (Huge improvement possible if a check for null is added before recursing root.left and root.right)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | /** * Definition for a binary tree node. * public class TreeNode { * public int val; * public TreeNode left; * public TreeNode right; * public TreeNode(int x) { val = x; } * } */ public class Solution { private void PreOrder(TreeNode root) { if (root == null) return; TreeNode tmp = root.left; root.left = root.right; root.right = tmp; PreOrder(root.left); PreOrder(root.right); } public TreeNode InvertTree(TreeNode root) { if (root == null) return root; PreOrder(root); return root; } } |
- Not In Place (Has a very bad run time performance)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 | /** * Definition for a binary tree node. * public class TreeNode { * public int val; * public TreeNode left; * public TreeNode right; * public TreeNode(int x) { val = x; } * } */ public class Solution { private TreeNode minvertedroot; private void PreOrder(TreeNode root, TreeNode invertedroot) { if (root == null || invertedroot == null) return; TreeNode left = null; if (root.left != null) { left = new TreeNode(root.left.val); } TreeNode right = null; if (root.right != null) { right = new TreeNode(root.right.val); } invertedroot.val = root.val; invertedroot.left = right; invertedroot.right = left; if (root.right != null) { PreOrder(root.right, invertedroot.left); } if (root.left != null) { PreOrder(root.left, invertedroot.right); } } public TreeNode InvertTree(TreeNode root) { if (root == null) return root; minvertedroot = new TreeNode(root.val); PreOrder(root, minvertedroot); return minvertedroot; } } |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 | class Solution { private: void Transpose(vector<vector<int>>& matrix) { auto rows = matrix.size(); auto cols = rows; for (auto row = 0UL; row < rows; ++row) { for (auto col = row; col < cols; ++col) { std::swap(matrix[row][col], matrix[col][row]); } } } void SwapCols(vector<vector<int>>& matrix) { auto rows = matrix.size(); auto cols = rows; for (auto row = 0UL; row < rows; ++row) { for (auto col = 0UL; col < cols / 2; ++col) { std::swap(matrix[row][col], matrix[row][cols - col - 1]); } } } public: void rotate(vector<vector<int>>& matrix) { Transpose(matrix); SwapCols(matrix); } }; int main() { int n = 3; vector<vector<int>> v(n, std::vector<int>{}); int start = 1; for (auto index = 0; index < n; ++index) { std::vector<int> row(n, 0); for (int v = 0; v < n; ++v) { row[v] = start++; } v[index].swap(row); } Solution s; s.rotate(v); for (auto const &e : v) { for (auto const &i : e) { std::cout << i << " "; } std::cout << std::endl; } } |
No comments:
Post a Comment